Question		on	Expected Answer	Mark	Additional Guidance
1	(a)	(i)	composition for n and p: u d d & u u d	B1	
			charge for n and p: 0 & +1	B1	Allow: charge 'e' instead of '+1' or '1'
		(ii)	up + (+1/3) 0	B1	Allow: charges in terms of 'e'
			down - +1/3 (0)	B1	
	(b)	(i)	$^{1}_{0}$ N \rightarrow $^{1}_{1}$ P + $^{0}_{-1}$ e + $\overset{-}{\nu}$	A2	Allow: '→ proton + electron + <u>anti</u> neutrino' Note: -1 for any omission or error. Score = 0 if more than one error
		(ii)	weak (nuclear)	B1	
		(iii)	lepton(s) and hadron(s) / baryons(s)	B1	Not: Neutrons are mesons
			Total	8	

Question		ion	Expected Answer		Additional Guidance	
2	(a)		Spontaneous: the decay cannot be induced / occurs without external influence Random: cannot predict when / which (nucleus) will decay	B1		
			next	B1		
	(b)		The probability of decay of a nucleus	M1	Allow:	
			per unit time	A1	$\lambda = A / N$ (Any subject) C1 A = activity and $N =$ number of <u>nuclei</u> A1	
	(c)		Living plants / animals absorb carbon(-14)	B1		
			Once dead, the plant does not take in any more carbon(-14)	B1		
			The fraction of C-14 to C-12 (nuclei) or number of C-14 (nuclei) or activity of C-14 (nuclei) measured in dead <u>and</u> living (sample)	M1		
			$x = x_0 e^{-\lambda t}$ used with data above to estimate the age	A1		
	(d)	(i)	$\lambda = \ln 2 / T_{1/2}$ decay constant = 1.24 x 10 ⁻⁴ (y ⁻¹)	B1		
		(i)	$A = A_0 e^{-\lambda t}$			
			$0.194 = 0.249 \times e^{-(1.24 \times 10^{-4} \times t)}$ $\ln(0.194/0.249) = -1.24 \times 10^{-4} t$	C1		
			time = 2.0×10^3 (y)	A1		
		(ii)	The activity is (very) small / decay is random	B1		
		(iii)	Activity so low that it cannot be differentiated from the background	B1		
			Total	13		

Question	Answer	Marks	Guidance
3 (a)	Rate of decay / disintegration of $\frac{\text{nuclei}}{\text{or}}$ or Number of γ (photons) emitted per unit time	B1	The question has 500 Bq. Hence allow the following: Number of $\underline{\text{nuclei}}$ decaying per second / number of γ (photons) emitted per second Not: Rate of decay of atoms / molecules / particles
(b)	(rate of energy =) $500 \times 10^6 \times 2.2 \times 10^{-14}$ rate of energy emission = 1.1×10^{-5} (J s ⁻¹)	C1 A1	
(c)	Collimator / lead tubes and gamma (ray photons) travel along the axis of lead tubes (AW) Scintillator / Sodium lodide (crystal) and gamma ray / gamma photon produces (many) photons of (visible) light	B1	Not 'it collimates' Allow: parallel rays / uni-directional rays travel along the lead tubes (AW)
	Photomultiplier (tubes) / photocathode and dynodes and (electrical) pulse / signal / electrons produced by photon(s) of visible light Computer and signals / pulses /electrons (from photomultiplier tubes) are used to generate an image QWC: Quality of image improved by narrower / thinner / longer collimators OR longer scanning time	B1 B1	Not 'information / data' in place of signals
	Total	8	

Question		Answer	Marks	Guidance
4	(a)	$\lambda = \frac{0.693}{6.6 \times 10^3}$ or $\lambda = \frac{\ln 2}{6.6 \times 10^3}$ decay constant = 1.1 × 10 ⁻⁴ (s ⁻¹)	C1 A1	Note : Answer to 3sf is 1.05×10^{-4} (s ⁻¹)
	(b)	$A = \lambda N$ $N = \frac{250 \times 10^6}{1.05 \times 10^{-4}}$ $\text{number} = 2.38 \times 10^{12} \text{ or } 2.4 \times 10^{12}$	C1 A0	Possible ecf from (a) Allow full credit for bald 2.4×10^{12}
	(c)	mass of F-18 = $\frac{2.38 \times 10^{12}}{6.02 \times 10^{23}} \times 0.018$ (= 7.116 × 10 ⁻¹⁴ kg) mass of FDG= $7.116 \times 10^{-14} / 0.099$ mass of FDG = 7.2×10^{-13} (kg)	C1 C1 A1	Possible ecf from (b) Allow full credit for using 2×10^{12} ; answer is 6.04×10^{-13} (kg)
	(d)	$A = 250 \times e^{-(1.05 \times 10^{-4} \times 20 \times 60)}$ activity = 220 (MBq)	C1 A1	Possible ecf from (a) Allow: 1 mark for 249 (MBq); factor of 60 omitted
	(e)	 (FDG/positron-emitting substance is injected into the patient) Any three from: Annihilation of electron and positron Positron-electron annihilation produces two gamma photons The gamma photons travels in opposite directions The patient is surrounded by (a ring of) gamma detectors A 3-D image is created (using the detector-signals with the aid of computer software) QWC: The arrival times / delay times of the photons (at diametrically opposite detectors) are used to pinpoint areas of increased activity (AW) 	B1 × 3	Allow: rays / waves instead of photons in 2 and 3
		Total	12	